What are flexi-wings and why do F1 teams want them?

Things are rarely ever new in Formula 1, and the news cycle has once again stopped at a flexi-wing contretemps as the current teams have formed factions over their use.

What are flexi-wings and why do F1 teams want them?

Video footage of Red Bull’s rear wing tilting back at high speeds on the Barcelona straight at the previous grand prix courted the ire of Mercedes, with Lewis Hamilton quick to draw attention to the “bendy” wing on the RB16B.

And thus, the can of worms was opened; Ferrari and Alfa Romeo also admitted to introducing aeroelasticity into their rear wings, and it seems distinctly possible that there are more teams who indulge in the flexi-wing practice.

The situation now is that the FIA wants to introduce more rigorous testing at the French Grand Prix to ensure that wings do not flex under load – even though the current wings already pass muster in scrutineering.

As ever in F1, this decision suits nobody; Mercedes and McLaren want the revised flex tests before the Azerbaijan Grand Prix at Baku, while the likes of Red Bull, Ferrari, Alfa Romeo and anyone else in possession of a flexible wing argue that this will cost them more money to stiffen up their designs.

On Sky Sports F1, Red Bull team boss Christian Horner – who has been through multiple scuffles over flexing wings during his tenure in charge of the squad – drew attention to Mercedes’ front wing, which also appeared to flex downwards towards the ground, and suggested the Silver Arrows’ qualms were rooted in hypocrisy.

As the throwaway “bendy rear wing” comment from Hamilton was uttered, it pulled upon a thread that has unravelled a significant sub-plot to the 2021 season. Oh, what fun!

Carlos Sainz Jr., Ferrari SF21

Carlos Sainz Jr., Ferrari SF21

Photo by: Andy Hone / Motorsport Images

What is a flexi-wing, and why do F1 teams employ them?

Flexi-wings are...well, wings that flex. Strictly speaking, all wings flex as it’s impossible to achieve infinite stiffness, but some do so more than others.

In Formula 1 terms, this is usually manifested in a tilting action. At speed, the front and rear wings produce more drag as the velocity of the car increases. In mathematical terms, the square of the velocity determines the drag force, as per the following equation:

drag force = (coefficient of drag * frontal area * air density * velocity squared) / 2.

As speed increases, the force pulling the car back increases exponentially.

As such, you can’t use all of the maximum drive of the powertrain to develop speed on the straights. At circuits like Monza, teams use skinny wings to slash drag but, at more conventional circuits, you need the full size of the front and rear wings to generate downforce in the corners.

By tilting them back at speed, this can reduce the overall frontal area of the wing, and perhaps its drag coefficient entirely. By using the above formula, the increasing square of velocity is being marginally offset by the reduced area and drag coefficient.

The truth is that all teams would dearly love to have infinitely flexing wings on their F1 cars, as the front and rear wings could theoretically straighten out and colossally reduce drag on the fastest sections of a circuit. But under grounds of safety, they simply cannot do so.

The FIA does have tests to ensure that wings do not flex during scrutineering, with front wings being subjected to load tests and rear wings subjected to pull-back tests, which are described in the technical regulations under Article 3.9.

Antonio Giovinazzi, Alfa Romeo Racing C41

Antonio Giovinazzi, Alfa Romeo Racing C41

Photo by: Zak Mauger / Motorsport Images

Why are flexi-wings discouraged under safety grounds?

The study of aerodynamics in F1 is often considered as ‘aerospace, but turn it upside-down'. Because many of the same principles exist between the two fields, they share many of the same problems.

Aeroplane wings flex very slightly, because the structure must be a trade-off between rigidity and weight. Materials with a high torsional strength are often heavy, and the same is true of an F1 car.

F1 wings today are produced from carbon fibre, and often use a low-density core (such as a foam) to provide further rigidity – so they’re still light and rigid. But the same is true that the more weight you add, for example using further plies of carbon fibre, the more rigid it becomes. Therefore, the trade-off still exists.

But if a wing is too light, then it will likely lose strength. Under load, this means the wing could break – be it through contact with another car or through effects developed by aeroelasticity.

Aeroelasticity is its own scientific field; although elasticity is desirable for some applications, it leaves a wing or a structure exposed to phenomena such as flutter.

If an F1 wing flutters, this means it produces a very unpredictable level of downforce, which can fluctuate between extreme values.

Lewis Hamilton, Mercedes W12

Lewis Hamilton, Mercedes W12

Photo by: Steve Etherington / Motorsport Images

As such, if a driver is piloting a car with that unpredictability, there will undoubtedly be instances where they have a very low level of downforce in braking for a corner. Naturally, that can result in a particularly nasty crash if they cannot get the car stopped in time.

Flutter is a harmonic motion and, if exposed to frequencies by oncoming airflow that approach its natural frequencies, that can tear the wing apart in extreme cases. By increasing rigidity, that can be avoided.

Those reasons are why the FIA conducts scrutineering to assess the structural integrity of the car to ensure the drivers remain safe within the cockpit.

Read Also:

What will happen next?

As more stringent tests fall into place for the French Grand Prix, this should reduce the wing flex used by teams even further. There will undoubtedly be a cost to this, which will upset the teams operating close to the cost cap, but it can be argued that safety is priceless.

This will not stop teams trying to flex their wings to the maximum level allowed, but it will cut the amount of performance derived from using a flexible wing geometry.

In the future, as materials science continues to evolve, F1 could well allow wings to change shape more flagrantly over the course of a race – but under the current rules, this is not permissible.

shares
comments

Related video

How box office Alonso is still proving his star quality in F1

Previous article

How box office Alonso is still proving his star quality in F1

Next article

Szafnauer: Aston Martin must be realistic now P3 ‘a step too far’

Szafnauer: Aston Martin must be realistic now P3 ‘a step too far’
Load comments
The times that suggest Verstappen should be confident of F1 Russian GP recovery Plus

The times that suggest Verstappen should be confident of F1 Russian GP recovery

For the second race in a row, Mercedes has ended the first day of track action on top. It’s in a commanding position at the Russian Grand Prix once again – this time largely thanks to Max Verstappen’s upcoming engine-change grid penalty. But there’s plenty to suggest all hope is not lost for the championship leader at Sochi

The ‘backwards step’ that is the right move for Formula 1 Plus

The ‘backwards step’ that is the right move for Formula 1

OPINION: With its days apparently numbered, the MGU-H looks set to be dropped from Formula 1’s future engine rules in order to entice new manufacturers in. While it may appear a change of direction, the benefits for teams and fans could make the decision a worthwhile call

Formula 1
Sep 23, 2021
The floundering fortunes of F1’s many Lotus reboots Plus

The floundering fortunes of F1’s many Lotus reboots

Team Lotus ceased to exist in 1994 - and yet various parties have been trying to resurrect the hallowed name, in increasingly unrecognisable forms, ever since. DAMIEN SMITH brings GP Racing’s history of the legendary team to an end with a look at those who sought to keep the flame alive in Formula 1

Formula 1
Sep 22, 2021
Why the 2021 title fight is far from F1's worst, despite its toxic background Plus

Why the 2021 title fight is far from F1's worst, despite its toxic background

OPINION: Formula 1 reconvenes for the Russian Grand Prix two weeks after the latest blow in ‘Max Verstappen vs Lewis Hamilton’. While the Silverstone and Monza incidents were controversial, they thankfully lacked one element that so far separates the 2021 title fight from the worst examples of ugly championship battles

Formula 1
Sep 22, 2021
How F1’s other champion to emerge from 1991 thrived at Lotus Plus

How F1’s other champion to emerge from 1991 thrived at Lotus

Mika Hakkinen became Michael Schumacher’s biggest rival in Formula 1 in the late-90s and early 2000s, having also made his F1 debut in 1991. But as MARK GALLAGHER recalls, while Schumacher wowed the world with a car that was eminently capable, Hakkinen was fighting to make his mark with a famous team in terminal decline

Formula 1
Sep 21, 2021
The forgotten F1 comeback that began Jordan’s odyssey  Plus

The forgotten F1 comeback that began Jordan’s odyssey 

Before Michael Schumacher – or anyone else – had driven the 191 (or 911 as it was initially called), Eddie Jordan turned to a fellow Irishman to test his new Formula 1 car. JOHN WATSON, a grand prix winner for Penske and McLaren, recalls his role in the birth of a legend…

Formula 1
Sep 20, 2021
The squandered potential of a 70s F1 underdog Plus

The squandered potential of a 70s F1 underdog

A podium finisher in its first outing but then never again, the BRM P201 was a classic case of an opportunity squandered by disorganisation and complacency, says STUART CODLING

Formula 1
Sep 18, 2021
The other notable Monza escape that F1 should learn from Plus

The other notable Monza escape that F1 should learn from

OPINION: The headlines were dominated by the Italian Grand Prix crash between Max Verstappen and Lewis Hamilton, who had the halo to thank for avoiding potentially serious injury. But two days earlier, Formula 1 had a lucky escape with a Monza pitlane incident that could also have had grave consequences

Formula 1
Sep 17, 2021